

Short-term memory for ASL fingerspelling and print

Laboratory for Language and Cognitive Neuroscience, San Diego State University

> Zed Sevcikova Sehyr Karen Emmorey

Contact: zsevcikova@mail.sdsu.edu

The Phonological Loop

- The phonological loop is used to temporarily store and rehearse information in WM (Baddeley, 1986; Gathercole & Baddeley, 1993)
- · Words are stored in form (speech) based representation

Speech-based phonological short-term store

Baddeley (1986)

Evidence for a phonological similarity effect in serial recall

- Words are repeated from a small set to reduce reliance on long-term memory (N = 8)
- Poorer recall of phonologically related words:

Si	milar words	<u>Dissimilar wo</u>	<u>ords</u>
	blue	king	
hard?	chew	farm	easy?
	due	tax	
	jew	bug	

The phonological similarity effect

- Printed words are re-coded into a phonological code in short-term memory (STM)
- Evidence for phonological (speech-based) coding for deaf readers has been mixed but appears with more skilled readers (Conrad, 1979, Chincotta &
- · Do all deaf signers use a phonological code?
- Manual coding (Shand 1982, Moulton & Beasley 1975, Hanson, Liberman & Shankweiler, 1984)
- Deaf signers have an English-based code and an ASL-based code available to them (Campbell & Wright, 1989; Dodd, Hobson, Brasher, & Campbell, 1983; Hanson, 1982, 1990)

The Sign-based Phonological Loop

· ASL signs are stored in a form based representation

Manual similarity in ASL fingerspelling

- Fingerspelling (FS) provides a manual system for representing English orthography
- FS as an additional or alternative manual coding strategy?
- A manual similarity effect in fingerspelled word recall?

Manual similarity in ASL fingerspelling Manually similar Manually dissimilar Manually dissimilar Manually dissimilar easier? Hanson, Liberman & Shankweiler (1984)

Our questions

Print to a phonological code?

- Do deaf ASL signers re-code printed words into a phonological code?
- A phonological similarity effect for print?

Phono similar words	Phono dissimilar words
blue	king
chew	farm
due	tax
jew	bug
hard?	easy?

Fingerspelling (FS) to a manual code?

- Do deaf ASL signers represent FS words in a manual code?
- Is there a manual similarity effect for FS?

Manually similar words	Manually dissimilar words
e-a-s-t	b-o-x
n-o-s-e	c-a-p
m-a-t	d-e-s-k
n-o-t	l-i-e
hard?	easy?

Example: manually similar words

READY

Print to a manual code?

- Do deaf ASL signers re-code printed words into a manual (FS) code?
- A manual similarity effect for printed words?

Manually similar words	Manually dissimilar words
east	king
nose	farm
mat	tax
not	bug
hard?	easy?

FS to a phonological code?

- Do deaf signers recode FS into a phonological code? Dual-coding?
- A phonological similarity effect for FS words?

Phono similar words	Phono dissimilar words
b-l-u-e	k-i-n-g
c-h-e-w	f-a-r-m
d-u-e	t-a-x
j-e-w	b-u-g
hard?	easy?

Hypotheses

- If deaf readers recode printed words into a phonological code, they will show a phonological similarity effect.
- If deaf readers store/rehearse FS words in a manual code, they will show a manual similarity effect.
- If they re-code print into FS, we will see a manual similarity effect for printed words.
- If they re-code FS words into a phonological code, we will see a phonological similarity effect for FS words

Design and stimuli				
	Phonological condition:		Manual condition:	
	similar	dissimilar	similar	dissimilar
Printed words (deaf & hearing)	blue chew due jew shoe two who you	king farm tax bug some with cry that	east nose mat not meat same son ten	box cap desk lie race love sick new
FS words (deaf only)	b-l-u-e c-h-e-w d-u-e j-e-w s-h-o-e t-w-o y-o-u	k-i-n-g f-a-r-m t-a-x b-u-g s-o-m-e w-i-t-h c-r-y t-h-a-t	e-a-s-t n-o-s-e m-a-t n-o-t m-e-a-t s-a-m-e s-o-n t-e-n	b-o-x c-a-p d-e-s-k l-i-e r-a-c-e l-o-v-e s-i-c-k n-e-w

Rating of stimuli

· Phonological similarity ratings:

"Please rate how similar each pair of wors sounds to you" (1 don't sound similar at all – 5 sound very similar)

· Visual similarity ratings

"Please rate how similar each pair of words looks to you"
(1 don't look similar at all – 5 look almost exactly the same)

• Manual similarity ratings

"Please rate how similar each pair of words feels to you when you fingerspell them" (1 don't feel similar at all – 5 feel very similar)

Participants

	deaf	hearing
Print	21 (M age = 31.1, SD = 10.6)	21 (M age = 22.7, SD = 5.2)
FS	20 (M age = 32.8, SD = 9.2)	

- reading grade: deaf = 12 (PIAT 83); hearing = college (PIAT 84);
 t(40) = 0.89, p > .05
- reading fluency score: t(30) = 0.47, p>.05
- print exposure score: t(40) = 0.86, p > .05
- KBIT score: t(40) = 0.89, p > .05
- phono awareness (composite score): deaf M = .62, SD = .15; hearing M = .91, SD = .07; t (28) = 8.2, p < .001*

Procedure

- 8 target words, 8 control words
- 24 four-word lists: 12 similar, 12 dissimilar lists (+ 8 practice lists)
- · order presentation was counterbalanced
- participants recalled printed words in print, fingerspelled words in fingerspelling (FS was video recorded)

 Relatively low accuracy for both dissimilar and similar FS items – a good measure of similarity of FS?

deaf signers in print and FS modalities

Phonological coding and reading proficiency

- the use of phonological coding in STM task did not correlate with phonological awareness performance task or reading scores
- is there a relationship between the use of speech-based coding in STM and reading proficiency?

The manual similarity effect for fingerspelled words? Similar words Dissimilar words n-o-s-e b-o-x e-a-s-t с-а-р m-a-t d-e-s-kn-o-t I-i-e s-a-m-e I-o-v-e s-o-n n-e-w t-e-n r-a-c-e m-e-a-t s-i-c-k Similar enough? Dissimilar enough?

The manual similarity effect for FS

- New manual similarity metrics developed using an articulator model by Diane Brentari and Jonathan Keane https://github.com/jonkeane/amohs
- Similarity metrics:
 - pairwise similarity for pairs of words
 - e.g. box-dog is similarity(b vs. d)+similarity(o vs. o) +similarity(x vs. g)
- Contour metrics:
 - comparison of all handshapes within a single word
 - e.g. box is similarity(b vs. o)+similarity(o vs. x)

The manual similarity effect for FS

- A manual similarity effect with our new stimuli will confirm that deaf signers use a manual code to represent FS in WM
- If we don't see a manual similarity effect, and we continue to find a phonological similarity effect, it will support an argument that FS is mainly re-coded into a speech-based code

Summary and conclusions

- a phonological similarity effect contributed to poorer recall of printed words in deaf and hearing groups (replicating Hanson 1982)
- deaf readers maintain and rehearse printed words in STM using a phonological (speechbased) code

Summary and conclusions

- we did not find evidence for a manual (fingerspelling-based) coding of fingerspelled or printed words – this requires further work
- it remains unclear if fingerspelling is maintained in STM using a manual code

Summary and conclusions

- phonological similarity also affected recall of fingerspelled words in deaf readers
- fingerspelling is re-coded into a phonological (speech-based) code for short-term recall / rehearsal

Summary and conclusions

- speech-based code may be better suited for rehearsal of temporal order information in short-term memory than a manual code
- the ability to use a speech-based code for short-term rehearsal may not be a predictor of reading achievement; it is unclear if access to phonology could be used to support skilled reading (this warrants further research)

Acknowledgments

Cindy Farnady
Jennifer Petrich
Marcel Giezen
Brittany Arnold
All deaf and hearing participants in the LLCN lab

Funding: NSF Reading Grant BSC 1154313 to Karen Emmorey and SDSURF

References

Baddeley, A. D. (1966). Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. <u>Quarterly Journal of Experimental Psychology</u>, 18, 362-365.

Campbell, R., & Wright, H. (1989). Immediate memory in the orally trained deaf: Effects of "lipreadability" in the recall of written syllables. British Journal of Psychology, 80, 299-312.

Chincotta & Chincotta (1996) Digit Span, Articulatory Suppression, and the Deaf: A Study of the Hong Kong Chinese. <u>American Annals of the Deaf, 141</u> (3), 252-257

Conrad, R. (1979). The deaf schoolchild. London: HarperRow Dodd, B., Hobson, P., Brasher, J., & Campbell, R. (1983). Deaf children's short-term memory for lip-read, graphic and signed stimuli. British Journal of Developmental Psychology, 1, 353-364.

Gathercole, S. E., & Baddeley, A. D. (1993). Working memory and language. Hillsdale, NJ: Erlbaum.

References cont.

Hanson, V. L., Liberman, 1. Y, & Shankweiler, D. (1984). Linguistic coding by deaf children in relation to beginning reading success. <u>Journal of Experimental Child Psychology</u>, 37.

Hanson, V. L. (1990). Recall of order information by deaf signers: Phonetic coding in temporal order recall. <u>Memory & Cognition</u>, 18, 604-610.

Moulton, R. D., & Beasley, D. S. Verbal coding strategies used by hearing-impaired individuals. <u>Journal of Speech and Hearing Research</u>, 1975, 18, 559-570.

Poizner, H., Bellugi, U., & Tweney, R. D. (1981). Processing of formational, semantic, and iconic information in American Sign Language. <u>Journal of Experimental Psychology: Human Perception & Performance</u>, 7, 1146-1159.

Shand, M. A. (1982) Sign-based short-term coding of American Sign Language signs and printed English words by congenitally deaf signers. <u>Cognitive Psychology</u>, 14, 1-12.

Wilson & Emmorey (1997) A visuospatial "phonological loop" in working memory: Evidence from American Sign Language. <u>Memory & Cognition</u>, <u>25</u> (3), 313-320